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Abstract—Side Channel Attacks (SCA) poses a severe threat to
the security of cryptographic devices. SCA exploits the physical
leaked information from a system during its cryptographic
procedure to unveil the secret key. Differential Power Analysis
(DPA) and Differential Electromagnetic Analysis (DEMA) are
effective examples which benefit from this approach. Neverthe-
less, these attacks are susceptible to countermeasures based on
random processing and, so, they require temporal alignment to be
successful. This work proposes a preprocessing stage to filter and
detect the electromagnetic radiation signature from the traces of
a cryptographic device. The proposal includes signal processing
techniques and the Fuzzy C-means algorithm. A study case with
a hardware implementation of the DES algorithm submitted to
DEMA attack is presented. Results point to the viability of the
proposed method, demonstrating an average decrease of 4.9 times
in the number of traces needed for a successful attack when
compared to a threshold approach.

Index Terms—Side Channel Attacks; Cryptanalysis; Machine
Learning; Clustering; Signal Processing

I. INTRODUCTION

System-on-Chip (SoC) developed for security applications
relies upon encryption mechanisms to maintain the integrity
and confidentiality of the system. The hardware implementing
the cryptographic algorithm has been proved to leak side-
channel information [1]. In view of this evidence, a class
of cryptanalysis is proposed aiming the investigation of such
knowledge. This class, known as Side Channel Attacks (SCA),
consists of a series of strategies that exploit physical vulnera-
bilities leaked from a cryptography device. Based on this, SCA
attacks take advantage of the dependency of the processed
data by the system with this leaked information to reveal
the cryptographic key [2]. Examples of such properties are
processing time, power and the electromagnetic radiation from
the circuit. Since these measures depend on the intern use of
the secret key, the adversary can produce an efficient attack to
retrieve this key and reveal confidential data.

Differential Power Analysis (DPA) is one of the most
successful models of attack to modern cryptographic systems
since it is passive and non-invasive [3]. That means, the attack
explores the physical behavior of the device, and does not
leave shreds of evidence of it. DPA operates by monitoring
the power consumption from the target device. The power
consumption of a system is acquired by observing the current
consumption of the circuit during its operation [4]. Once these

measurements, also referred as power traces, are collected, the
data processed by the device can be correlated with its power
consumption through statistical analysis in order to unveil the
cryptographic key.

Differential Electromagnetic Analysis (DEMA) applies a
similar procedure proposed by DPA, considering the electro-
magnetic radiation emitted by the system. The information
obtained by the DPA attack is identified likewise in the DEMA
since the electric charges flow yields a magnetic field equiv-
alent to the power consumption observed [5]. The analysis
presented in this paper was performed with electromagnetic
traces, but are also applicable to power traces, for the case of
a DPA attack.

An efficient DEMA attack requires the acquisition of an
elevated number of power traces to be able to perform the
correlation analysis [1], [6]. Furthermore, it is essential that
the power traces are aligned in the time domain in order
to establish a relation between the data processed and the
assessed physical quantity [4]. In this way, the deliberated
insertion of misalignments in the temporal scope represents
a strong countermeasure because it makes it more difficult
to recognize the cryptographic processing signature from the
target device [7]. The identification of this target sequence
aims to improve the attack, delimiting strategic regions and
attenuating noise. A typical approach to extract the target
sequence consists in defining two parameters: a threshold and
a starting point for observing each trace. The first parameter
denotes an estimate for the amplitude that differentiates the
signature from noise [8].

In this context, this paper proposes a strategy to detect the
target sequence of the power traces, through the application of
signal processing techniques and unsupervised learning. The
experiments are performed in electromagnetic traces obtained
from an FPGA prototype of a DES (Data Encryption Standard)
implementation proposed in [9]. After applying the methodol-
ogy to extract the target signature, the resulting traces set are
submitted to the DEMA attack flow.

The paper is structured as follows: Section II describes
the proposed methodology for detecting the target sequence.
Section III presents and discusses experimental results, while
Section IV concludes this paper and gives directions for further
work.



II. METHODOLOGY

Power or electromagnetic traces obtained from crypto-
graphic systems with countermeasures demand a preprocess-
ing stage previously to the correlation analysis to be able to un-
veil the secret key. An approach to introduce randomness and
noise during the cryptographic procedure aims to conciliate
the Globally Asynchronous and Locally Synchronous (GALS)
design style with random frequency clock, as demonstrated in
[9]. This architecture implements a pipeline where each stage
generates locally its clock signal with different frequencies.
During the execution, each stage chooses randomly the fre-
quency which causes the misalignment in the time domain
during the traces acquisition [10].

Fig. 1 shows an example of an electromagnetic trace ob-
tained during the encryption in the GALS architecture with
two stages, processing eight rounds of the DES algorithm in
each one. The area highlighted by dashed line represents the
first stage, which denotes the target signature for the attack
and, consequently, the sequence to be detected and extracted.
The arrows depict the high amplitude peaks indicating the
noise induced by the trigger generated by the architecture
to synchronize itself with the oscilloscope, highlighting the
beginning and end of the significant data acquisition.

The proposed approach to identify the target signature is
based on the application of a clustering technique. Clustering
analysis is a machine learning procedure, whose purpose is to
partition a data set into homogeneous agroupments, referred to
as clusters. These clusters are formed so that the elements of
the same agroupment present great similarity with each other
and high distinction from elements of a different agroupment.
A clustering technique is an unsupervised learning method
since no label is given to it, being the algorithm itself respon-
sible for identifying patterns in the data. Since clustering is
not an invariable task, it is often necessary to adjust the data
and the model parameters until the results achieve the desired
response [11]. In this way, a preprocessing stage is conceived
to clean the data to be handled by the clustering algorithm.

A. Preprocessing Stage

The target signature for the attack is comprised between
the consumption peaks produced by the oscilloscope trigger.
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Fig. 1. Electromagnetic trace exposing a cryptographic procedure with
different operation frequencies.

In this way, the first step involves eliminating the outside
region by applying an exponential function in the trace to
accentuate amplitude differences. From this resultant trace,
the time period in which the maximum amplitude occurs is
selected, and if this mark is less than the trace length divided
by four, it is defined as the initial point of the trace containing
the signature. After this primary reduction of the trace, the time
period of maximum amplitude is identified again, denoting
the final point of the trace. If the first picked value was
bigger than one-quarter of the trace length, the steps described
above should be done inversely. These values were empirically
stipulated, through an exploratory analysis from a small subset
of traces, and the obtained results show that this procedure is
successful for all traces.

Subsequent to the reduction of the trace size, two signal
processing techniques are used in order to emphasize the
cryptographic signature and improve the signal to noise ratio
(SNR). Since the DPA attack defines the first stage of the DES
algorithm as the target of the attack, any other region is treated
as noise during the detection phase.

The first filter applied is the Simple Moving Average
(SMA), which smooths the shape of the trace and salients
possible patterns in a time series [12]. In this context, SMA
represents a low-pass filter. SMA is characterized as the
average formed by a stipulated number of previous values of
a dataset and is defined as

SMAt =
xt + xt−1 + ...+ xt−n+1

n
(1)

where n denotes the number of observations used in the
equation and t the time period where it occurred [13].

The final step in the preprocessing stage involves submitting
the resultant trace to the hyperbolic tangent (tanh) function.
The application of the tanh function accents the rounds of the
DES algorithm since its outputs are assumed to be in the range
of -1 to 1. The tanh is a common activation function for the
learning process in neural networks [14] and is given by

tanh(x) =
senh(x)

cosh(x)
=
ex − e−x

ex + e−x
(2)

The application of both techniques described above allows
a significant reduction of the noise while maintaining the
response of the original signal. Algorithm 1 summarizes the
steps adopted in the preprocessing stage for the dataset.

B. Clustering Stage

The chosen unsupervised technique for the clustering stage
was the Fuzzy C-means (FCM) [15]. FCM works by iteratively
advancing the centroids to its right location until convergence
is achieved. The centroid of a cluster characterizes the mean
of all its points. Since FCM is derived from fuzzy logic, each
element partitioned can belong to more than one cluster [16].
The FCM quantifies these partitioned elements by their degree
of belonging to each cluster. This value varies from 0 to 1
according to the similarity with the cluster, being 1 the most
similar possible. FCM method is characterized by a quadratic



Algorithm 1: Pseudo code for the preprocessing stage.
Input: Traces set Ti...n
Output: Sub-traces for the clustering stage

1 for each i ∈ T do
2 traceX = exp(Ti);
3 max = index(max(traceX));
4 if max < (length(trace)/4) then
5 init = max;
6 subTrace = Ti[init :];
7 final = index(max(subTrace));
8 subTrace = Ti[init : final];
9 else

10 final = max;
11 subTrace = Ti[: final];
12 init = indice(max(subTrace));
13 subTrace = Ti[init : final];
14 end
15 end
16 subTrace = SMA(subTrace, n = 150);
17 traceF= tanh(subTrace);
18 end

object function, denominated as Jm, which must be minimized
and is defined by

Jm =

N∑
i=1

C∑
j=1

µm
ij ‖xi − cj‖

2 (3)

where µij represents the degree of belonging of the point xi
in the cluster j, cj express the clusters centroids, and the fuzzy
coefficient m denotes the level of fuzziness of the resulting
classification.

The number of clusters (k) is an user-defined parameter, and
its appropriated value is arbitrary. To find an optimal k, the
adopted criterion was the sum of squared error for a different
number of clusters. This technique, also referred as elbow
method [17], is based on the Within-Cluster Sum of Squares
(WCSS) and provides a visual estimate for detecting the
right number of clusters. Figure 2 presents the elbow method
implemented on the WCSS measure for 2 to 25 clusters in the
trace produced by the preprocessing stage. The plot exhibits
and elbow shape near the solution with k = 5, where the
WCSS value is not decreasing drastically. Thus, this point was
selected as the ideal number of clusters and the trace was able
to be submitted to the FCM algorithm.

Fig. 3 shows an example of an electromagnetic trace applied
to the proposed flow. In Fig. 3 (a) is presented the sub-trace
resulting from the preprocessing stage which represents the
input to the clustering algorithm. The highlighted yellow area
exhibits the first stage of the DES algorithm with its eight
rounds, representing the same underlined region of Fig. 1.
Fig. 3 (b) presents the application of FCM with five clusters
in the trace of Fig. 3 (a). Each color represents a different
agroupment. The blue region indicates the two processing
stages from DES, where the first eight rounds can be clearly

counted. This cluster is picked by selecting the indexes in the
smaller one. The final step involves detaching the DES stages
by calculating the absolute distance between two subsequent
indexes. Then, the first stage is dissociated by selecting the
point immediately before that in which the distance is greater
than an empirical value, determined by the traces behavior.

III. RESULTS AND DISCUSSION

A dataset containing 100,000 electromagnetic traces ex-
tracted from a GALS architecture with two stages executing
a DES algorithm was submitted to the proposed methodol-
ogy. Each stage operates with a local clock with frequency
randomly defined between 38MHz and 60 MHz [9]. DEMA
attack is performed in these traces to verify the vulnerability
of the sub-traces resulting from the application.

The targets of the attack are the outputs of the eight
Substitution Boxes (SBoxes) in the first round of execution
of the DES algorithm contained in the first stage of the GALS
architecture. A Sbox is an essential function in the DES,
being responsible for concealing the relationship between the
cryptographic key and the original message. The DEMA attack
analyzes differential traces from each Sbox, where their peak
indicates the correct key. The main metric to evaluate the
quality of an attack is the minimum number of traces required
to unveil the cryptographic key [8]. The lower this number,
more efficient is the attack.

Table I presents the attack results, where the values cor-
respond to the necessary number of traces to achieve a
successful attack. It is observed that the needed number of
traces decreases in every SBox when compared to the attack
performed on the traces extracted by the threshold strategy.
The reduction varies from 3.4 up to 11.1 times in the number
of traces for DEMA attack to converge. It is important to
salient that SBoxes 5 and 8, which did not converge to the right
key, exhibit a disparity relating to the others, due to problems
during the acquisition of the electromagnetic traces [8]. Thus,
the average number of traces to recover the cryptographic key
only considered the six remaining SBoxes.

As a consequence, it is stated that the FCM generated
clusters appropriated to the problem examined. Through an

Fig. 2. WCSS value according to the number of clusters.



TABLE I
NUMBER OF TRACES REQUIRED BY S-BOX FOR DEMA ATTACK TO CONVERGE.

DEMA SBox 1 SBox 2 SBox 3 SBox 4 SBox 5 SBox 6 SBox 7 SBox 8 Mean SD
Threshold 15026 41236 77111 18337 NC 64164 33944 NC 41736.28 21108.96

FCM 2266 10285 22816 3103 NC 9528 3067 NC 8510.36 7149.56
Note: NC = not converged; SD = standard deviation.
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(a) Sub-trace resulting from the preprocessing stage.
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(b) Sub-trace grouped with five clusters through FCM.

Fig. 3. Electromagnetic trace from a GALS architecture having two stages
executing with local frequency submitted to the proposed methodology.

exploratory data analysis, in order to define the parameters
for the preprocessing stage, the presented methodology can be
expanded to a different set of traces, whether itself contains
power or electromagnetic measurements. The results of the
DEMA attack show the influence of the solution by pointing
to a cryptographic key retrieve in 4.9 times fewer traces than
the threshold approach. Moreover, the extraction of the target
information potentially decreases the computation cost for
performing the attack.

IV. CONCLUSION

The performance of DEMA and DPA attacks is associated
with the time domain alignment of the electromagnetic or
power traces acquired. Thus, a countermeasure adopted con-
sists in the insertion of randomness and noise, as well as the
asynchronous operation of cryptographic modules. This paper
introduces a procedure for detection and extraction of the
target sequence from measurements obtained from a cryptosys-
tem having a local clock with frequency randomly defined.
The method comprises signal processing techniques and an
unsupervised learning algorithm. It allows the identification of
interest region leading to a more efficacious attack. The impact
of the proposed method is evaluated by performing the DEMA
attack. Results demonstrate that the proposed methodology

is substantially more effective than a threshold strategy in
unveiling the secret key.

As future work, it is intended to verify the effect of other
clustering methods, such as k-means and k-medoids. Besides,
the refinement and abstraction of parameters empirically iden-
tified can be further explored.
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